Thick Film Resistors Voltage Divider

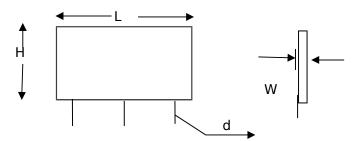
ODR Series

DESCRIPTION

A homogeneous Film of Resistive Ink is Screen Printed High Alumina Substrates . A special Laser machine is used to achieve the highly precise resistance tolerance by triming . Tin coated electrolytic copper wire are soldered to the termination. The resistor are coated with special silicon conformal coating for Electrical , Mechanical and climatic protection, Marking is done with respect to designated value on coated Resistor.

FEATURES:

High Voltage


Wide Range of Resistors

Pulse withstanding design available

Flame proof coating available

Easy to Mount

Custom Built Design and values available

TYPE	WATTAGE	L	D	d	w	Max Voltage (KV)	Resistance Range
ODR1	1 W	25.40	9.00	0.78	2.50	4	up to 100M
ODR2.5	1.5 W	25.40	12.70	0.78	2.50	5	up to 250M
ODR5	2.0 W	37.60	9.00	0.78	2.50	6	up to 250M
ODR7.5	3.0 W	37.60	12.70	0.78	2.50	10	up to 500M
ODR10	4.0 W	50.80	12.70	0.78	2.50	12	up to 500M
ODR12.5	4.5 W	50.80	25.40	0.78	2.50	15	up to 1G

Dimensions are of Uncoated Resistors

Pitch - As required

Leadframes terminations available

PERFORMANCE CHARACTERISTIC

Short Term Overload (1.5 x Rated voltage - 5 Sec)

Load Life (Rated 1000 Hrs 1.5/0.5 Hr ON/OFF)

Temperature Cycling (-55 /+155, 5 cycles)

Voltage Coefficient Resistance (VCR)

Temprature Coefficient Resistance (TCR)

Insulation Resistance (at 500V for 1 Min)

DWV Test

Resistance Soldering Heat (260°C 10 Sec)

Solderability (Solder bath dip - 5 Sec)

Resistance to Solvents (Solvent dip - 3 min)

Terminal Strength (Bending, Tensile, Torsion)

Derating

Requirement Shall not Exceed

Delta R $\pm (0.5\% + 0.05 \text{ Ohms})$

Delta R $\pm (1.0\% + 0.05 \text{ Ohms})$

Delta R $\pm (0.5\% + 0.05 \text{ Ohms})$

< 5 ppm/°C

± 100ppm

>10 000 M Ohms

No Flash over at 1KV

Delta R $\pm (0.5\% + 0.05 \text{ Ohms})$

> 95% Coverage

No deterioration

No Mechanical Damage

Linearly from Rated Dessipation at 70°C

to Zero at 125°C

Ordering Info:

ODR10 R1/R2 G 100 ppm

*Specifications is subject to change without notice									